An Overview of Unsupervised and Semi-Supervised Fuzzy Kernel Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview of Unsupervised and Semi-Supervised Fuzzy Kernel Clustering

For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Kernel-based clustering has proven to be an effective approach to partition such data. In this paper, we provide an overview of several fuzzy kernel clustering algorithms. We focus on methods that optimize an fuzzy C-mean-ty...

متن کامل

An Improved Semi-supervised Fuzzy Clustering Algorithm

Semi-supervised clustering is an important method which can improve clustering performance by introducing partial supervised information. This paper mainly studies the semi-supervised fuzzy clustering based on Mahalanobis distance and Gaussian Kernel for SCAPC algorithm. Here, we give a new semi-supervised fuzzy clustering objective function. By solving the optimization problem with above objec...

متن کامل

Active semi-supervised fuzzy clustering

Clustering algorithms are increasingly employed for the categorization of image databases, in order to provide users with database overviews and make their access more effective. By including information provided by the user, the categorization process can produce results that come closer to user’s expectations. To make such a semi-supervised categorization approach acceptable for the user, thi...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Semi-supervised Kernel-Based Fuzzy C-Means

This paper presents a semi-supervised kernel-based fuzzy c-means algorithm called S2KFCM by introducing semi-supervised learning technique and the kernel method simultaneously into conventional fuzzy clustering algorithm. Through using labeled and unlabeled data together, S2KFCM can be applied to both clustering and classification tasks. However, only the latter is concerned in this paper. Expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Fuzzy Logic and Intelligent Systems

سال: 2013

ISSN: 1598-2645

DOI: 10.5391/ijfis.2013.13.4.254